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Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the
mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with
a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the
residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged
over all attractor ruins can be described by the superposition of �truncated� power-law distributions if the basin
of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models
exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems
if the transition probability among attractor ruins can be represented as a Markov chain.
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The concept of chaotic itinerancy �CI� has been proposed
as a universal class of dynamics in multiattractor systems to
explain phenomena such as chaotic itinerant motion among
varieties of ordered states �1–3�. CI describes the attraction
of dynamical orbits to an ordered motion state, which is
maintained for a certain length of time but eventually degen-
erates into high-dimensional chaotic motion by separation
from the ordered state. Repetition of this process results in
successive itineration over ordered motion. The ordered mo-
tion states in this sequence are referred to as “attractor ruin.”
Demonstrating the mathematical properties of CI has become
an important problem for a variety of systems in many sci-
entific disciplines, including semiconductor physics, chemis-
try, neuroscience, and laser physics �4�.

To mathematically characterize CI, some researchers have
suggested that attractor ruin should be represented as Milnor
attractors �4–7�, that is, a minimal invariant set with a posi-
tive measure as its basin of attraction �8�. As this definition
does not exclude the possibility of orbits leaving from any
neighborhood of the attractor, attractor ruin can be validly
described in terms of Milnor attractors. Several models in
which the existence of Milnor attractors with CI have been
reported �5–7�. However, it remains unclear as to whether
Milnor attractors must exist in any system exhibiting CI.

The stability of attractor ruin is an important property for
the characterization of CI, and the residence time distribution
is regarded as the statistical property of such stability. In this
paper, the residence time distribution of orbits at attractor
ruin are investigated, and the possibility of CI in a dynamical
system containing Milnor attractors is discussed. A mecha-
nism of transition among attractor ruins is introduced to de-
scribe the distribution, and a model based on that mechanism
is proposed.

A globally coupled map �GCM� is employed as an ex-
ample of a dynamical system displaying CI �2�, as described
by

xt+1�i� = �1 − ��f„xt�i�… +
�

N
�
j=1

N

f„xt�j�… , �1�

where xt�i� is a real number, t is a discrete time step, i is the
index for elements �i=1,2,…,N=system size� and f is a map
on R as the local element in Eq. �1�. When the elements i and
j are synchronized, i.e., xt�i��xt�j�, the elements are part of
a single cluster. Each element belongs to a cluster, including
clusters with only one element. The state of the GCM is
characterized by the partition of elements into clusters, and
the state of the partition is called the clustering condition. CI
in the GCM is observed as chaotic changes of the clustering
conditions �5,9�, that is, a clustering condition implies attrac-
tor ruin. If all the elements of a cluster in a clustering con-
dition are fully synchronized, i.e., xt�i�=xt�j� for any ele-
ments in one cluster, the clustering condition is an invariant
subspace. Therefore, CI in a GCM is considered to represent
the phenomenon in which orbits approach an invariant sub-
space after lingering in the neighborhood of another invari-
ant subspace for some time. As an indicator of the stability of
clustering conditions, the local splitting exponent �spl

T �i ,n�
�10� is introduced, as defined by

�spl
T �i,n� =

1

T
�
m=n

n+T

ln��1 − ��Df„xm�i�…� . �2�

The local splitting exponent represents the local expansion
rate between an element i and an adjacent element, and thus
can be considered to represent the local expansion rate be-
tween two elements in the cluster to which the element i
belongs. The element i is contained in a cluster with more
than one element if �spl

T �i ,n� is negative, and the element
does not synchronize with any other elements if �spl

T �i ,n� is
positive. Hence, switching of the sign of �spl

T �i ,n� indicates a
change in the clustering condition. Moreover, if an orbit ap-
proaches sufficiently close to an invariant subspace corre-
sponding to a clustering condition, the local splitting expo-
nent can describe the distance between the orbit and the
invariant subspace using a logarithmic scale.*Electronic address: jnamika@jaist.ac.jp
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In general, if the system is unstable in the direction nor-
mal to an invariant subspace, an orbit leaves an attractor ruin
containing the invariant subspace. The mechanism that de-
stabilizes an invariant subspace is referred to as a blowout
bifurcation, and is known to cause bursts in on-off intermit-
tency �11�.

In summary, the mechanism of CI can be described as
follows.

• An orbit leaves an attractor ruin when the distance be-
tween the orbit and an invariant subspace in the attractor ruin
is greater than a certain value.

• If nonlinearity �i.e., a local expansion rate� is weak in
the direction normal to the invariant subspace, the distance
between the orbit and the invariant subspace decreases. Oth-
erwise, the distance increases.

Based on this mechanism mentioned, a prototype model
in which CI occurs is introduced. Consider the distance be-
tween an orbit and the nearest invariant subspace. Although
in the GCM the number of values for nonlinearity �i.e., local
splitting exponents� is equal to the system size, only one
variable is used in the present system to represent nonlinear-
ity, having a stochastic value of 1 or −1 decided by a prob-
ability associated with the nearest attractor ruin to the orbit.
A probability governing the transition among attractor ruins
is also introduced. In the definition of this transition prob-
ability, it is assumed that the influence of a past attractor ruin
upon the current potential transition decays rapidly, such that
the transition depends on only a finite number of past attrac-
tor ruins. This assumption affords the simplest case of cha-
otic itinerant dynamics on attractor ruins in CI.

A stochastic model satisfying the characteristics above is
as follows. Let n�N, xn�N� �0	, and yn= �1,… ,M	. A se-
ries of positive integers �xn	n=0

� is defined by

xn+1 = 
0 xn = 0 and �n = − 1,

xn + �n otherwise,
� �3�

where �n is a stochastic variable with a value of 1 with prob-
ability pyn

or −1 with 1− pyn
. Here, xn is given by a random

walk on a half-line �see Fig. 1�a��. A series �yn	n=0
� is also

defined, as given by

yn+1 = 
yn xn � 0,

zn otherwise,
� �4�

where zn is a stochastic variable such as zn=k with probabil-
ity Aynk, being an element of a non-negative square matrix A.
The term yn is determined by a Markov chain with the tran-
sition probability matrix A �see Fig. 1�b��, representing an
index for attractor ruins, and e−xn is the distance from an
invariant set corresponding to yn. The variable py denotes the
intensity of nonlinearity on attractor ruin y, and Aij is the
transition probability from attractor ruin i to j.

Figure 2 shows a time series of xn and yn with respect to
M =100, Aij =1 � M, and pi=0.45+�i, where �i is a random
number taken from �−0.05,0.05�. The figure reveals a region
in which yn is fixed and a region in which yn changes dy-
namically. In the former, xn is large, representing that case
where an orbit approaches the invariant set.

The residence time distribution of orbits at an attractor
ruin is defined in the present model as follows. The probabil-
ity P�i , t� for residence time t at an attractor ruin i is given by
the probability for xn+t=0 if xn=0, yn= i, and xn+k�0 for any
k� t and n�N. Since t is regarded as the recurrent time to
origin in a one-dimensional random walk �12,13�, this prob-
ability is given by

P�i,t� = �
1 − pi t = 1,

�pi�1 − pi��n

n
2n − 2

n − 1
� ∃ n � N t = 2n ,

0 otherwise.

�5�

If t=2n and n�N , lnP�i ,2n� can be denoted by

FIG. 1. Conceptual illustration of an itinerant dynamics model.
�a� Schematic of the space of xn, where the stability of an attractor
ruin is represented by a random walk on a half-line, and pi is a
probability that a point moves to the right on the half-line, i.e.,
xn+1=xn+1. If the point arrives at the leftmost address on the half-
line, transition among attractor ruins is triggered. �b� Schematic of
the space of yn. Transition among attractor ruins is described by a
Markov chain with a transition probability matrix A, where Ai,j is
the probability of moving from attractor ruin i to j, i.e., yn= i and
yn+1= j.

FIG. 2. Time series of xn and yn �M =100,Aij =1/M , pi=0.45
+�i�.
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lnP�i,2n� � n ln�pi�1 − pi�� −
1

2
ln�	n2�n − 1��

+ �2n − 2�ln2 �6�

which is given by the approximate expression of Eq. �5�. If
pi=0.5, then the right-hand side of Eq. �6� takes the form of
a constant plus the second term. That is, the residence time at
the attractor ruin i is governed by a power-law distribution. If
pi�0.5, then n in the first and third terms of Eq. �6� are not
cancelled, causing the residence time distribution to be trun-
cated �see Fig. 3�. The probability that the residence time at
the attractor ruin i is longer than t is given by

Q�i,t� = 1 − �
k=1

t

P�i,k� . �7�

It is easy to see that Q�i ,1�= pi and Q�i ,2n+1�=Q�i ,2n� for
any n�N. Since

P�i,2n� =
�pi�1 − pi��n

2
�42n − 2

n − 1
� − 2n

n
�� , �8�

then

Q�i,2n� = �1 − 4pi�1 − pi���
k=1

n−1
�pi�1 − pi��k

2
2k

k
�

+ pi − 2pi�1 − pi� +
�pi�1 − pi��n

2
2n

n
� . �9�

Hence, limt→�Q�i , t�=0 if pi
0.5, and limt→�Q�i , t��0 if
pi�0.5. Accordingly, while the transition from attractor ruin
i surely takes place when pi
0.5, transition does not neces-
sarily take place when pi�0.5.

In studying CI, the residence time distribution averaged
by all attractor ruins is a more useful property than the resi-
dence times of each attractor ruin because the distribution of
individual attractor ruins can only be studied when the struc-
ture of the invariant sets is clear. However, showing the
structure is difficult in high-dimensional dynamical systems.
To simplify the present discussion, it is assumed without loss
of generality that the transition probability matrix A is irre-
ducible �17�. When the eigenvector associated with a posi-
tive maximum eigenvalue �existent by the Perron-Frobenius

theorem� is denoted by r, normalization of r �denoted q�
provides the stationary distribution in a Markov chain with
the transition probability matrix A.

Suppose that pi
0.5 for any 1
 i
M. Since the transi-
tion from each attractor ruin always occurs at a probability of
unity, orbits itinerate over all attractor ruins. Hence, the prob-
ability of residence time t for any attractor ruin can be de-
scribed by �i=1

M qiP�i , t� from the probability P�i , t� and the
stationary distribution q= �qi	i=1

M . Consequently, the residence
time distribution averaged by all attractor ruins is the super-
position of �truncated� power-law distributions. As a result,
there is a case in which such a distribution does not appear to
follow a power law. Figure 4 shows some examples of resi-
dence time distributions for two attractor ruins. In case �a�,
the residence time distribution follows a power law due to
the existence of a dominant attractor ruin �p2=0.49 and q2
=0.99�. However, the residence time distribution in case �b�
does not follow a power law. In this case, one attractor ruin
rarely attracts orbits, but the orbits that it does attract remain
attracted for relatively a long time �p1=0.49 and q1=0.01�.
The other attractor ruin attracts orbits frequently, but the resi-
dence time for each is relatively short �p2=0.25 and q2
=0.99�. In this case, the residence time distribution has mul-
tiple scales.

On the other hand, if pi�0.5, then the probability Qi
=limt→�Q�i , t� �providing that no transition will ever occur
at attractor ruin i� is a positive value. Then, since the transi-
tion probability matrix A is irreducible, the probability R that
orbits itinerate over attractor ruins forever is given by

R = lim
n→�

�
i=1

M

qi�1 − Qi��n

= 0. �10�

Therefore, CI can only occur as a transient state in this case.
To confirm this observation that the residence time distri-

bution averaged over all attractor ruins in this prototype
model of the CI mechanism can be described by the super-
position of �truncated� power-law distributions, a computer
simulation for the GCM defined by Eq. �1� was performed.
Figure 5 shows the simulated residence time distribution av-
eraged over all clustering conditions in a GCM with f�x�
=1−�x2. This result clearly shows that the residence time
distribution in the GCM follows a power law as in the pro-
posed model. Figure 5�a� represents the case that orbits itin-
erate over attractor ruins having under an almost identical

FIG. 3. Residence time distribution at attractor ruin i with prob-
ability pi.

FIG. 4. Residence time distribution averaged over all attractor
ruins �M =2,q1=0.01,q2=0.99�.
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distribution, and Fig. 5�b� shows the case with different dis-
tributions.

As another example of CI, the dynamics of a kicked
single rotor under the influence of noise is considered �14�.
This dynamics is defined by the following two-dimensional
map:

xn+1 = xn + yn + �x �mod 2	� ,

yn+1 = �1 − �yn + � sin�xn + yn� + �y , �11�

where x corresponds to the phase, y corresponds to the an-
gular velocity,  is the damping, and � is the strength of the
forcing. The terms �x and �y, where ��x

2+�y
2
�, are the

amplitude of the uniformly and independently distributed
noise. The dynamics of Eq. �11� is illustrated in Fig. 6. As
seen in Fig. 6�b�, the orbit is attracted to certain ordered
motion states for a certain period, but is eventually kicked
out of the states and enters a chaotic behavior regime. Figure
7 shows the result of a computer simulation using Eq. �11�
for the residence time distribution of orbits at attractor ruins.
The residence time distribution averaged over all attractor
ruins appears to be the superposition of truncated power-law
distributions, similar to case �b� in Fig. 4. This simulation
and the preceding results imply that two attractor ruins with
different residence time distributions exist in the dynamics of
Eq. �11�. Theoretical results based on the proposed model
may be applicable to other models exhibiting CI.

Compare the mechanism of temporal intermittency in
low-dimensional dynamical systems with that of CI. Tempo-
ral intermittency is a phenomenon in which bursts sometimes
appear in the intervals of ordered states, and is seen at some

points in the parameter space in the neighborhood of bifur-
cation boundaries �15�. Traditionally, research on temporal
intermittency has discussed the occurrence of bursts and re-
currence intervals, whereas CI research focuses on chaotic
itinerant motions among several ordered states. Phenomeno-
logically, temporal intermittency and CI share several fea-
tures. For example, ordered states and chaotic states appear
in turn. However, as discussed above, the mechanism of CI
differs from that of classical temporal intermittency, as seen
in the dissimilar residence time distributions �18�. Thus, it is
necessary to consider CI as distinct from other temporal in-
termittencies.

In the present model, for an attractor ruin i with pi�0.5,
CI has been shown to occur only as a transient state. Note
that pi�0.5 implies that an attractor ruin i is a Milnor attrac-
tor, since the basin of attraction for the attractor ruin i has a
nonzero measure. Hence, if there exists a Milnor attractor in
the proposed model, CI occurs only as a transient state. It has
been reported that CI may exist in a coupled Milnor attractor

FIG. 5. Residence time distribution averaged over all clustering
conditions in a GCM with N=10, where elements i and j are syn-
chronized if �xt�i�−xt�j���10−6. �a� �=1.57 and �=0.3, �b� �=1.9
and �=02.

FIG. 6. Example of a time sequence described by Eq. �11� with
=0.02, �=3.5, and �=0.15. �a� Phase of rotor x, �b� angular ve-
locity y.

FIG. 7. Residence time distribution averaged over all attractor
ruins as given by Eq. �11� with =0.02, �=3.5, and �=0.15. Each
region corresponding to an attractor ruin is given by �2n−1�	�y

 �2n+1�	 for each n�Z.
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system �7�. From the present results, two possibilities can be
considered for CI in such systems: �a� behavior like CI is
strictly observed as transient phenomena, or �b� the transition
probability among attractor ruins cannot be represented as a
Markov chain. In the latter case, it is expected that the sys-
tem is more complex than considered here, necessitating fur-
ther analysis of such systems.

This model has good scope for extension. In the present
model, the term of nonlinearity has been simplified to either
1 or −1. Although this simplification can be easily removed,
it is believed that the same results will be obtained even if
the model is extended to the general case. More importantly,
the present model does not describe the specific behavior of
orbits at each attractor ruin. While the simplified behavior
assumed here facilitates investigation of the relationship be-
tween the stability and the transition probability of attractor

ruins, it prevents discussion of the dynamical behavior at
each attractor ruin. One of the extensions to express specific
behavior is to prepare a function describing the change of
states �dynamics� at any attractor ruin. However, as orbits
successively itinerate over attractor ruins, the dynamic
change of functions associated with attractor ruins must be
considered. Functional shifts provide a framework for de-
scribing such dynamical systems �16� by defining a shift
space as a set of bi-infinite sequences of some functions on a
set of symbols. Functional shifts can be used to represent
dynamical systems with dynamic changes of functions. Im-
proving the proposed model by incorporating functional
shifts will be a topic of future study.
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